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Abstract

With the availability of massive multivariate data comes a need to

develop flexible multivariate distribution classes. The copula approach

allows to construct marginal models for each variable separately and

join them with a dependence structure characterized by a copula. The

class of multivariate copulas was limited for a long time to elliptical

(including the Gaussian and t-copula) and Archimedean families (such

as Clayton and Gumbel copulas). Both classes are rather restrictive

with regard to symmetry and tail dependence properties. The class

of vine copulas overcomes these limitations by building a multivariate

model using only bivariate building blocks. This gives rise to highly

flexible models that still allow for computationally tractable estimation

and model selection procedures. These features made vine copula

models quite popular among applied researchers in numerous areas of

science. This paper reviews the basic ideas underlying these models,

presents estimation and model selection approaches, and discusses

current developments and future directions.
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1. Introduction to copulas

For the analysis of large multivariate data sets, flexible multivariate statistical models are

required that can adequately describe also the multivariate tail behavior. Standard dis-

tributions, such as the multivariate normal or Student t distribution, are too inflexible

in their marginal and joint behavior. They often require that all univariate and multi-

variate marginal distributions are of the same type and only allow for highly symmetric

dependence structures. These characteristics are rarely satisfied in applications. The cop-

ula approach allows to separate the univariate margins from the dependence structure.

In particular a d-dimensional copula C is a multivariate distribution function on the d-

dimensional hypercube [0, 1]d with uniformly distributed marginals. For an absolutely con-

tinuous copula, the corresponding copula density can be obtained by partial differentiation,

i.e. c(u1, ..., ud) := ∂d

∂u1...∂ud
C(u1, ..., ud) for all u in [0, 1]d. Sklar (1959) proved the follow-

ing fundamental representation theorem.

Theorem 1 (Sklar’s Theorem). Let X be a d-dimensional continuous random vector

with joint distribution function F , marginal distribution functions Fj, and marginal density

functions fj for j = 1, . . . , d. Then the joint distribution function can be expressed as

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) 1.

with associated density f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))f1(x1) · · · fd(xd) for some d-

dimensional copula C with copula density c.

For absolutely continuous distributions the copula C is unique. Equation 1 also holds

for discrete random variables, however the probability mass function is different than the

density above. For simplicity, we will work in the continuous case in what follows. Using this

theorem, flexible multivariate distributions can be constructed from d-dimensional copulas.

By inversion of Equation 1 we can use any d-dimensional distribution function to obtain

the corresponding copula. Examples are the Gaussian and the Student t copula. Using

these copula families together with arbitrary margins results in multivariate distributions

which are much more flexible than the multivariate distribution classes used in the inversion.

Archimedean copulas are another class of parametric copulas that are built directly using

generator functions. The Gumbel, Clayton and Frank copula families are prime examples.
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Two-parameter copulas such as the BB class allow for different, non-zero upper and lower

tail behavior and are discussed in Section 5.2 of Joe (1997). A nice elementary introduction

to copulas is given in Genest & Favre (2007) and more theoretical treatments are the books

by Nelsen (2007) and Joe (1997).

From Theorem 1 for d = 2, we can immediately derive expressions for the conditional

density and distribution functions, which are needed later. In particular the conditional

density f1|2 and distribution function F1|2 can be expressed as

f1|2(x1|x2) = c12(F1(x1), F2(x2))f2(x2) 2.

F1|2(x1|x2) =
∂

∂F2(x2)
C12(F1(x1), F2(x2)) =

∂

∂v
C12(F1(x1), v)|v=F2(x2). 3.

Since vine copulas are built out of bivariate copulas we now discuss properties of bi-

variate copulas. To investigate the dependence properties we consider several dependence

measures. Since the Pearson correlation ρ(X1, X2) = Cor(X1, X2) is not invariant with

respect to monotone transformations of the margins, it is more useful to consider invariant

dependence measures such as Kendall’s τ and Spearman’s ρ. In particular, Spearman’s

rank correlation is defined as the Pearson correlation of the random variables F1(X1) and

F2(X2), i.e., ρs(X1, X2) = Cor(F1(X1), F2(X2)). Another popular measure invariant to

marginal transformations is Kendall’s τ , defined as

τ(X1, X2) = P ((X11 −X21)(X12 −X22) > 0)− P ((X11 −X21)(X12 −X22) < 0),

where (X11, X12) and (X21, X22) are independent and identically distributed copies of

(X1, X2). Since τ(X1, X2) and ρs(X1, X2) are invariant with regard to margins they depend

only on the underlying copula. More specifically it holds

τ(X1, X2) = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1

ρs(X1, X2) = 12

∫ 1

0

∫ 1

0

u1u2dC(u1, u2)− 3.

In contrast to these central measures of dependence, tail dependence coefficients are used

to characterize dependence among extreme events. We consider the probability of the joint

occurrence of extremely small or large values and define the upper and lower tail dependence

coefficient as

λupper = lim
t→1−

P (X2 > F−1
2 (t)|X1 > F−1

1 (t)) = lim
t→1−

1− 2t+ C(t, t)

1− t

λlower = lim
t→0+

P (X2 ≤ F−1
2 (t)|X1 ≤ F−1

1 (t)) = lim
t→0+

C(t, t)

t
.

The Gaussian and Frank copulas do not exhibit tail dependence, i.e., λupper = λlower = 0.

The Student t copula has symmetric tail dependence, i.e., λupper = λlower. The Clayton

and Gumbel copula have only lower or upper tail dependence, respectively. To allow for a

visual comparison between different bivariate copula families, marginally normalized con-

tour plots are helpful. For this we consider 3 different scales: the original scale (X1, X2),

the copula scale (U1, U2) = (F1(X1), F2(X2)) and the marginally normalized scale (z-scale)

(Z1, Z2) = (Φ−1(U1),Φ−1(U2)). Here Φ denotes the standard normal distribution function.

Comparison of contours on the copula scale for different families is difficult, since copula
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Figure 1

Examples of normalized contour plots. From left to right: Independence, Gaussian, Gumbel,

Student copulas.

densities are in general unbounded at the corners of [0, 1]2. This is not the case if one works

on the z-scale. Here (Z1, Z2) has N(0, 1) margins and thus any non-elliptical contour shape

indicates a deviation from a Gaussian dependence. An example is given in Figure 1. The

perfect circle in the leftmost panel corresponds to independence; the elliptical shape in the

next panel to a Gaussian copula. Deviations from Gaussian dependence can be seen in the

two right panels. The first, a Gumbel copula, shows a spike in the upper-right tail which is

an indication of upper tail dependence. The rightmost panel is a t-copula, which has tail-

dependence in both the upper and lower tails. To allow for further flexibility of bivariate

parametric copulas their survival and reflection versions can be considered. For example,

the survival version of a bivariate copula density c is given by c̄(u1, u2) = c(1− u1, 1− u2).

These can be visualized through rotations of the normalized contours (Czado 2019, Section

3.6).

We now turn to estimation in the parametric setting. In a copula based model specified

by Equation 1 we have to estimate both the marginal and copula parameters. Joint maxi-

mum likelihood estimation can be used, if the number of parameters is not too large. It is

more common to use a two step approach, however. In a first step, the marginal parameters

are estimated based on the iid observations xi = (xi1, . . . , xid) for i = 1, . . . , n. This can be

done separately for each of the d margins. In a second step, pseudo copula data is formed

by setting

ui = (ui1, . . . , uid) = (F̂1(xi1), . . . , F̂d(xid)), i = 1, ..., n. 4.

from which the copula parameters are estimated. If parametric marginal models are used, we

speak of an inference for margins (IFM) approach (Joe 2005). If the empirical distribution

function is used for the margins, we have a semiparametric approach (Genest et al. 1995).

Genest et al. (2011) have further proposed to estimate copula parameters by the inversion

of empirical Kendall’s τ estimates, when there is a one-to-one relationship between τ and

the copula parameter. However this approach is less efficient.

To help the reader to follow all reviewed concepts, we use the Abalone data set taken

from the UCI database (http://archive.ics.uci.edu/ml/datasets/Abalone). Abalones

are marine snails whose shells have a spiral structure. The data set contains measurements

on diameter, height, several types of weight (whole, shucked, viscera and shell), and the

number of rings. In our illustrations we restrict to female abalone shells. The upper right

triangle of Figure 2 shows scatter plots of psuedo-copula data along with their empirical

Kendall’s τ for the weight variables shuck, vis and shell. The empirical Kendall’s τ between

shuck and vis, shuck and shell, and vis and shuck is .73, .65 and .69, respectively. Using
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Figure 2

Dependence exploration for the weight variables shuck, vis and shell (diagonal: Histograms of the

pseudo copula data using empirical margins; upper triangle: pairwise scatter plots of the pseudo
copula data; lower triangle: pairwise normalized contour plots on the z-scale ).

Table 1 Parametric copula estimation for the variable pair shuck and shell.

family log-likelihood AIC BIC

Gaussian 802.79 -1603.58 -1598.40

Student t 825.01 -1646.02 -1635.68

Clayton 894.73 -1787.46 -1782.29

Gumbel 660.07 -1318.14 -1312.96

Survival Clayton 464.26 -926.52 -921.35

Survival Gumbel 914.87 -1827.74 -1822.57

empirical margins shows (diagonal of Figure 2) that the pseudo data (u-scale) is approximate

uniform. Normalized pairwise contour plots (z-scale) are shown in the lower triangular

panels of Figure 2. The panels indicate that dependence is asymmetric, with stronger

dependence in the lower left tail. Since the normalized pairwise contours are not elliptical,

a Gaussian copula is not appropriate. We start by searching for an appropriate parametric

copula model for the variable pair shuck and shell. We allow for the Gaussian, Student t,

(survival) Clayton and (survival) Gumbel copula. Corresponding log-likelihood, AIC and

BIC values based on the pseudo copula data are given in Table 1, which shows that a

survival Gumbel model is the best among the studied models.

In the case where copula models do not fit the data, we can also use a nonparametric

approach. Transformation kernel estimators were shown to perform best in Nagler et al.

(2017) and are implemented in the kdecopula and rvinecopulib R packages (Nagler 2018,

Nagler & Vatter 2020a). Finally we note that copula estimation based on pseudo copula

data requires approximately iid data. This is usually not the case for multivariate time

series data or in the presence of covariates. Here we advise to first remove the time series
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or regression structure for each margin by fitting appropriate univariate time series or

regression models, respectively. For time series, the resulting standardized residuals can

then be used to form the pseudo copula data. In regression models, the fitted conditional

response distribution should be used for the transformation to pseudo observations.

2. Pair copula decompositions and constructions in three dimensions

While the catalogue of bivariate parametric copula families is large, this is not the case for

d > 2. The motivation for vine copula models was to find a way to construct multivariate

copulas using only bivariate copulas as building blocks. The appropriate tool to obtain

such a construction is conditioning. Joe (1996) gave the first pair copula construction

in terms of distribution functions, while Bedford & Cooke (2001) and Bedford & Cooke

(2002) independently developed constructions in terms of densities. They also provided a

framework to identify all possible constructions. We first illustrate this construction for

d = 3 by starting with the recursive factorization

f(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1) 5.

and treat each part separately. Here Fj|D and fj|D denote the conditional distribution or

density function of Xj given XD, respectively. To determine f3|12(x3|x1, x2) we consider

the bivariate conditional density f13|2(x1, x3|x2). The copula density c13;2(·, ·;x2) denotes

the copula density associated with the conditional distribution of (X1, X3) given X2 = x2.

Using Theorem 1 for f13|2(x1, x3|x2) gives

f13|2(x1, x3|x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)f1|2(x1|x2)f3|2(x3|x2). 6.

Now f3|12(x3|x1, x2) is the conditional density of X3 given X1 = x1, X2 = x2 which can be

determined using Equation 2 applied to Equation 6, yielding

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)f3|2(x3|x2). 7.

Finally, direct application of Equation 3 gives

f2|1(x2|x1) = c12(F1(x1), F2(x2))f2(x2) 8.

f3|2(x3|x2) = c23(F2(x2), F3(x3))f3(x3). 9.

Inserting Equations 7–9 into Equation 5 yields a pair copula decomposition of an arbitrary

three dimensional density f(x1, x2, x3) as

f(x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)× c23(F2(x2), F3(x3)) 10.

× c12(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1).

We see that the joint density can be expressed in terms of bivariate copula densities,

marginal densities, and conditional distribution functions. However, this decomposition

is not unique:

f(x1, x2, x3) = c23;1(F2|1(x2|x1), F3|1(x3|x1);x1)× c13(F1(x1), F3(x3))

× c12(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1)
11.

f(x1, x2, x3) = c12;3(F1|3(x1|x3), F2|1(x2|x1);x3)× c13(F1(x1), F3(x3))

× c23(F2(x2), F3(x3))f3(x3)f2(x2)f1(x1)
12.

6 Czado and Nagler



are two different decompositions using a reordering of the variables in Equation 5.

All decompositions of the density have a conditional copula term of the form

cij;k(·, ·;xk), called pair copula. To facilitate estimation we normally neglect the depen-

dence on the specific conditioning value xk. This is called the simplifying assumption. For

a three-dimensional density with copula parameter vector θ = (θ12,θ23,θ12;3), we then get

the following simplified pair copula construction:

f(x1, x2, x3;θ) = c13;2(F1|2(x1|x2), F3|2(x3|x2);θ13;2)× c23(F2(x2), F3(x3);θ23)

× c12(F1(x1), F2(x2),θ12)f3(x3)f2(x2)f1(x1),
13.

where c13;2(·, ·;θ13;2), c12(·, ·;θ12) and c23(·, ·;θ23) are arbitrary parametric bivariate copula

densities. The dependence on marginal parameters has been suppressed to ease notation.

This is no longer a decomposition but a construction, where the dependence on x2 in

c13;2(F1|2(x1|x2), F3|2(x3|x2);θ13;2) is solely captured by the arguments. If the margins in

Equation 13 are uniform, we have a three-dimensional parametric copula density.

For the estimation of the parameter θ based on an i.i.d. sample xk = (xk1, xk2, xk3), k =

1, . . . , n, we follow the two-step approach discussed in Section 1. We create the associated

pseudo data uk,j , k = 1, . . . , n, j = 1, . . . 3 as in Equation 4. This allows us to write the

joint (pseudo-)likelihood for the trivariate copula density associated with Equation 13 as

`(θ;u) =

n∏
k=1

c13;2(C1|2(uk,1|uk,2;θ12), C3|2(uk,1|uk,2;θ23);θ13;2)

× c23(uk,2, uk,3;θ23)c12(uk,1, uk,2;θ12). 14.

Maximizing Equation 14 gives the joint maximum likelihood estimator θ̂. However there

is an alternative sequential estimation method, which remains computationally tractable in

high dimensions. First, we find parameter estimates θ̂12 and θ̂23 by maximizing

n∏
k=1

c12(uk,1, uk,2;θ12) and

n∏
k=1

c23(uk,2, uk,3;θ23)

over θ12 and θ23, respectively. Second we define the pseudo observations

uk,1|2,θ̂12 = C1|2(uk,1|uk,2; θ̂12) and uk,3|2,θ̂23 = C3|2(uk,3|uk,2; θ̂23), 15.

for k = 1, ..., n. Under the simplifying assumption these provide an approximate i.i.d sample

from the pair copula C13;2. Further the marginal distribution associated with the pseudo

observations Equation 15 is approximately uniform, since the transformation in Equation

15 is a probability integral transform with estimated parameter values. Therefore we use

them to estimate the parameter(s) of the pair copula c13;2 by maximizing

n∏
k=1

c13;2(uk,1|2,θ̂12 , uk,3|2,θ̂23 ;θ13;2)

over θ13;2. This splits the estimation θ into three simpler problems. The sequential estimate

can also be used as a starting value for the joint maximum likelihood estimation. A similar

sequential approach can also be followed when estimating pair copulas nonparametrically.

We now estimate all three possible pair copula constructions for the weight variables

shuck, vis and shell in the abalone data set. With the aid of normalized contour plots we

www.annualreviews.org • Vine copula based modeling 7



Table 2 Sequential parameter estimates, selected copula families, and implied depen-

dence measures for the weight variables shuck (1), vis (2) and shell (3).

c23 − c12 − c13;2 term family parameter(s) Kendall’s τ λupper λlower

c23 survival Gumbel 3.21 0.69 0.00 0.76

c12 survival Gumbel 3.65 0.73 0.00 0.79

c13;2 survival Gumbel 1.23 0.19 0.00 0.24

c13 − c12 − c23;1 term family parameter(s) Kendall’s τ λupper λlower

c13 survival Gumbel 2.93 0.66 0.00 0.73

c12 survival Gumbel 3.65 0.73 0.00 0.79

c23;1 survival Gumbel 1.43 0.30 0.00 0.38

c23 − c13 − c12;3 term family parameter(s) Kendall’s τ λupper λlower

c23 survival Gumbel 3.21 0.69 0.00 0.76

c13 survival Gumbel 2.93 0.66 0.00 0.73

c12;3 Student t (0.62, 12.06) 0.43 0.11 0.11

Table 3 Fit statistics for three possible pair copula constructions for the weight vari-

ables shuck (1), vis (2) and shell (3).

model log-likelihood num. par. AIC BIC

c23 − c12 − c13;2 2253.91 3 -4501.82 -4486.29

c13 − c12 − c23;1 2247.47 3 -4488.95 -4473.42

c13 − c23 − c12;3 2253.25 4 -4498.50 -4477.80

select appropriate pair copula families for the three possible constructions and the sequential

parameter estimation results are contained in Table 2. We see that in all three models

dependence is strong in the unconditional copulas, but weaker in the conditional copula.

We should note that the latter estimates are only valid if the model assumptions are satisfied.

In Table 3, fit statistics of the three models are compared, showing a superior performance

of the pair copula construction c23 − c12 − c13;2. This illustrates that it matters which pair

copula construction is fitted to the data.

In more than three dimensions, it will be helpful to represent the density factorization

as a graph called vine tree structure. Figure 3 shows the graphical representations of the

three factorization given in Equations 10–12 (from left to right). Panel (a) consists of two

levels. In the first level, the nodes labelled 1, 2, and 3 represent the random variables

X1, X2, and X3, respectively. They are connected by two edges, 1−2 and 2−3, correspond

to the pair copula terms involving c12 and c23 in Equation 10. The graph in the second level

is formed by turning the edges above into nodes and connecting them by an edge. This

edge represents the pair copula term involving the conditional density c13;2(·, ·;x2), where

the conditioning variable 2 is identified as the common element of the nodes 1, 2 and 2, 3.

Hence, each edge in the vine graph is associated with a copula density. The factorization of

the joint density corresponding to a given vine graph is then simply the product of marginal

densities and all copula densities associated with the edges of the vine tree structure. The

graphs in panels (b) and (c) correspond to the factorizations in Equations 11–12 in a similar

manner.

8 Czado and Nagler
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Figure 3

Graphical representation of the three pair copula constructions (a) c23 − c12 − c13;2, (b)

c13 − c12 − c23;1, and (c) c13 − c23 − c12;3.

3. Regular vine copulas and distributions

As we have seen in the previous section, there are three pair copula constructions available

for d = 3. Similar arguments can be used to derive factorizations of the joint density

f(x1, . . . , xd) for general d, but additional complications arise. For example, for d = 4 we

can derive the two factorizations

f(x1, x2, x3, x4)

= c14;23(F1|23(x1|x2, x3), F4|23(x4|x2, x3);x2, x3)

× c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)× c24;3(F2|3(x2|x3), F4|3(x4|x3);x3)

× c34(F3(x3), F4(x4))× c23(F2(x2), F3(x3))× c12(F1(x1), F2(x2))

× f4(x4)f3(x3)f2(x2)f1(x1).

16.

and

f(x1, x2, x3, x4)

= c34;12(F3|12(x3|x1, x2), F4|12(x4|x1, x2);x1, x2)

× c23;1(F2|1(x2|x1), F3|1(x3|x1);x1)× c24;1(F2|1(x2|x1), F4|3(x4|x1);x1)

× c14(F1(x1), F4(x4))× c13(F1(x1), F3(x3))× c12(F1(x1), F2(x2))

× f4(x4)f3(x3)f2(x2)f1(x1).

17.

The factorizations are represented as regular vine tree structures in Figure 4, where panel

(a) correspond to Equation 16 and panel (b) to Equation 17. In panel (a), each graph level

consists of a path. In contrast, in panel (b) each graph level consists of a star (where one

node is connected to all the others).

By permuting the variable indices, the two types of vine structures generate 12 factor-

izations each for a total of 24 (compared to only three possible factorizations for d = 3).

When d ≥ 5, the sub-graphs are no longer restricted to be paths or stars and the num-

ber of possible decompositions increases superexponentially in d (Morales-Nápoles 2011).

Furthermore, it becomes increasingly difficult to verify whether a factorization like 16–17

actually represents a valid density. To characterize and organize all valid factorizations,

Bedford & Cooke (2001) and Bedford & Cooke (2002) developed a convenient graphical

tool called regular vine tree structure. A regular vine consists of linked trees, where the

edges in one tree become the nodes of the next.

More formally, recall that a tree is a connected acyclic graph T = (N,E) with node set

N and edge set E. The set of graphs V = (T1, . . . , Td−1) is a regular vine tree sequence on

d elements if:

(1) T1 is a tree with node set N1 = {1, . . . , d} and edge set E1.

www.annualreviews.org • Vine copula based modeling 9



1 2 3 4

1, 3 2, 3 3, 4

1, 3; 2 2, 4; 3

1, 3 2, 3 3, 4

1, 2; 3 2, 4; 3

1, 4; 2, 3

(a)

1

2

3

4

1, 3 1, 2 1, 4

2, 3; 1 2, 4; 1

1, 3

1, 2

1, 4

2, 3; 1 2, 4; 1

3, 4; 1, 2

(b)
Figure 4

The two types of regular vine structures in four dimensions.

(2) For j ≥ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej .

(3) For j = 2, . . . , d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1

(proximity condition).

The proximity condition states that an edge between nodes in tree Tj is only possible, if

the corresponding edges in Tj−1 share a common node.

The R-vine tree structure corresponding to Equation 10 has nodes N1 = {1, 2, 3} and

edges E1 = {{1, 2}, {2, 3}} in tree T1 and nodes N2 = {{1, 2}, {2, 3}} and edges E2 =

{{1, 2}, {2, 3}} in tree T2. Since this set notation quickly becomes unwieldy, a simpler

notation is needed. For any edge e ∈ Ei define the complete union

Ae =
{
j ∈ N1|∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 such that j ∈ e1 ∈ . . . ∈ ei−1 ∈ e

}
.

The conditioning setDe of an edge e = {a, b} is defined asDe := Aa∩Ab and the conditioned

sets Ce,a and Ce,b are given by

Ce,a = Aa \De and Ce,b = Ab \De.

Kurowicka & Cooke (2006) showed that Ce,a and Ce,b are singletons, so we often abbreviate

the edge e = (Ce,a, Ce,b;De) by e = (ae, be;De). For example the edge e = {a = {1, 2}, b =

{2, 3}} has Aa = {1, 2} and Ab = {2, 3} and therefore De = {2}. It follows that Ce,a = {1}
and Ce,b = {3} resulting in e = (1, 3; 2).

We have already seen two common special cases in Figure 4 for d = 4. In a canonical

(C-) vine all trees are stars: in every tree there is a single node, called the root, that is

connecting all the others. A specific C-vine can be identified by the order of root nodes.

Another example of a C-vine is shown in the middle panels of Figure 5, where the root nodes

are 1, (1, 4), (6, 4; 1), (6, 2; 4, 1), (5, 2; 6, 4, 1). Since all indices from previous root nodes are

contained in the label of later root nodes, we can also specify this order by only referencing

the index that enters in the next tree. For example, the root node sequence above can be

written as 1, 4, 6, 2, 5, 3. In a drawable (D-) vine tree structure all trees are paths. More

formally, this means that all but two nodes have exactly two neighbors. The two nodes with

only one neighbor are called leaves. For a D-vine tree sequence, the proximity condition

implies that the specification of tree T1 determines all other trees. To characterize a D-vine

structure, we therefore only need to specify the path in the first tree, called the order of a

D-vine. The right panels in Figure 5 show a D-vine with order 3 − 5 − 6 − 2 − 1 − 4 (or,

equivalently, 4− 1− 2− 6− 5− 3). The tree structure of a D-vine can be drawn in a way
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Figure 5

Vine tree structures for variables whole, shuck, vis, shell, dia and len from the female abalone data

set (left: R-vine, middle: C-vine, right: D-vine).

that resembles a grape vine, which is why Bedford & Cooke (2001) called the linked tree

sequence a vine.

After the building plan is defined, we can construct a regular vine distribution for a d-

dimensional random vector X = (X1, . . . , Xd). This distribution is specified by the triplet

(F ,V,B) with:

1. Marginal distributions: F = (F1, . . . , Fd) is a vector of continuous marginal dis-

tribution functions of the random variables X1, . . . , Xd.

2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.

3. Bivariate copulas: The set B = {Ce|e ∈ Ei; i = 1, . . . , d− 1}, where Ce is a bivari-

ate copula with density. Here Ei is the edge set of tree Ti in the R-vine tree sequence

V.
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4. Relation between R-vine tree sequence and the set of bivariate copulas:

For each e ∈ Ei, i = 1, . . . , d− 1, e = {a, b}, Ce(·, ·) is the copula associated with the

conditional distribution of XCe,a and XCe,b given XDe .

The copula Ce corresponding to edge e is denoted by CCe,aCe,b;De with corresponding density

cCe,aCe,b;De . This copula is also called a pair copula. We already employed the simplifying

assumption above: we assume that Ce(·, ·) does not depend on the specific value of XDe . In

non-simplified models, we would need a separate set B of bivariate copulas in (iii) for every

possible value of the random vector X. This means that for every edge e, the pair-copula

Ce would depend on the value of XDe . For simplicity, we only consider the simplified case.

For the existence of such distributions Bedford & Cooke (2002) showed the following result.

Theorem 2 (Existence of a regular vine distribution). Assume that (F ,V,B) satisfy the

properties (1)-(3), then there is a valid d-dimensional distribution F with density

f1,...d(x1, . . . xd) = f1(x1)× · · · × fd(xd) 18.

×
d−1∏
i=1

∏
e∈Ei

cCe,aCe,b;De(FCe,a|De(xCe,a |xDe), FCe,b|De(xCe,b |xDe)),

such that for each e ∈ Ei, i = 1, . . . , d − 1, with e = {a, b} we have for the distribution

function of XCe,a and XCe,b given XDe

FCe,aCe,b|De

(
xCe,a , xCe,b |xDe

)
= Ce

(
FCe,a|De(xCe,a |xDe), FCe,b|De(xCe,b |xDe)

)
.

Further the one-dimensional margins of F are given by Fi(xi), i = 1, . . . , d.

If all margins are standard uniform, we call the resulting distribution a regular vine

copula. Let D be a set of indices from {1, ..., d} not including i and j. The copula associated

with the bivariate conditional distribution (Xi, Xj) given that XD = xD is denoted by

Cij;D(·, ·). In contrast the conditional distribution function of (Ui, Uj) given UD = uD is

expressed as Cij|D(·, ·|uD). This is in general not a copula.

Equation 18 involves conditional distribution functions as arguments of the pair copula

densities. These can be determined recursively from conditional distributions associated

with the pair copulas in the model. In particular, Joe (1996) showed the following result:

Let X be a random variable and Y be a random vector with absolutely continuous joint

distribution. Let Yj a component of Y and denote the sub-vector of Y with Yj removed

by Y−j . In this case the conditional distribution of X given Y = y satisfies the following

recursion

FX|Y (·|y) =
∂CX,Yj ;Y−j (FX|Yj

(x|y−j), FYj |Yj
(y|y−j))

∂FYj |Y−j
(yj |y−j)

, 19.

where CX,Yj ;Y−j (·, ·) is the copula corresponding to (X,Yj) given Y−j .

For C- and D-vine tree sequences we call the associated regular vine distributions C-

and D-vine distributions, respectively. Omitting arguments, their densities are given by

f1,...,d(x1, ..., xd) =

[ d−1∏
j=1

d−j∏
i=1

cj,j+i;1,··· ,j−1

]
×
[ d∏

k=1

fk(xk)

]
,

f1,...,d(x1, . . . , xd) =

[ d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1)...,(i+j−1)

]
·
[ d∏

k=1

fk(xk)

]
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Using the first column of Figure 5 we can express the associated R-vine distribution as

frv
1,...,6 = c12c13c14c16c56c15;6c36;1c34;1c24;1c23;14c46;13c35;16

c45;136c26;134c24;1346f1f2f3f4f5f6.

and the C- and D-vine tree structure corresponding to the middle and right column of

Figure 5 respectively by

fcv
1,...,6 = c12c13c14c15c16c24;1c34;1c45;1c46;1c26;14c36;14c56;14

c23;146c25;146c35;1246f1f2f3f4f5f6. 20.

fdv
1,...,6 = c41c12c26c56c35c24;1c16;2c25;6c36;5c23;65c15;26c46;12

c45;126c13;256c34;1256f1f2f3f4f5f6. 21.

If all or some of the variables are discrete, similar vine-based factorizations of the joint

probability density/mass function can be derived. We refer to Panagiotelis et al. (2012),

Stöber (2013), and Stöber et al. (2015) for more details.

4. Estimation and selection of vine copula models under the simplifying
assumption

As mentioned in the previous section, a stepwise approach to estimation is more tractable in

higher dimensions. Here, we first estimate the marginal distribution functions and use them

to create pseudo copula data. This copula data is then used to estimate an appropriate

vine copula. For this vine copula model we have to solve three problems of increasing

complexity:

(1) Given the vine tree sequence and pair copula families, estimate the copula parameters.

(2) Given the vine tree sequence and a catalogue of pair copula families, select the best

family and estimate the corresponding parameters for each edge in the vine.

(3) Select the vine tree structure and the pair copula families and estimate the correspond-

ing parameters for each edge.

We can solve Problem (1) using the sequential estimation approach discussed in Section

2. For this we extend the construction of the pseudo data from tree T2 given in Equation 15

to trees T3 to Td−1 using estimated conditional copula distribution functions. This approach

is very fast since it allows to estimate the parameters of each pair copula term separately,

starting from tree T1 until Td−1. The asymptotic properties of such parameter estimators,

including standard errors, are studied in Haff et al. (2013), Stöber & Schepsmeier (2013)

and Schepsmeier & Stöber (2014). For Problem (2), we can also proceed sequentially and

consider each pair copula separately. We fit the parameters for each family in the catalogue

and choose the one which minimizes the AIC or BIC criteria.

Problem (3) is the most challenging, since the number of vine tree structures grows

as d! × 2(d−2)(d−3)/2−1 (Morales-Nápoles 2011). For example the number of regular vine

tree structures for d = 10 is approximately 5 × 1014. Even if one wants to restrict to

C- and D-vines, there are almost 2 million structures to be investigated. In Dissmann

et al. (2013), a greedy selection algorithm has been developed based on the idea to fit the

strongest dependencies first. This is natural since estimation errors are propagated in the

sequential estimation approach and we may hope to find sparse models. To measure the
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Table 4 Sequential parameter estimates, selected copula families, and implied depen-

dence measures for six variables of the female abalone data set.

tree edgea family parameter(s) Kendall’s τ λupper λlower

1 6,5 survival Gumbel 6.39 0.84 0.00 0.89

1 6,1 survival Gumbel 5.20 0.81 0.00 0.86

1 1,3 survival Gumbel 4.92 0.80 0.00 0.85

1 1,4 survival Gumbel 4.82 0.79 0.00 0.85

1 1,2 survival Gumbel 5.64 0.82 0.00 0.87

2 5,1;6 Student t (0.39, 6.24) 0.25 0.11 0.11

2 6,3;1 Frank 0.53 0.06 0.00 0.00

2 3,4;1 BB8 90◦ (-1.37, -0.97) -0.15 0.00 0.00

2 4,2;1 Student t (-0.65, 5.46) -0.45 0.00 0.00

3 5,3;6,1 Clayton 270◦ -0.10 -0.05 0.00 0.00

3 6,4;3,1 Clayton 0.09 0.05 0.00 0.00

3 3,2;4,1 Student t (-0.41, 4.93) -0.27 0.01 0.01

4 5,4;6,3,1 Frank 1.47 0.16 0.00 0.00

4 6,2;3,4,1 survival BB8 (1.61, 0.85) 0.15 0.00 0.00

5 5,2;6,3,4,1 Independence – 0.00 0.00 0.00

avariables: whole (1), shuck (2), vis (3), shell (4), dia (5), len (6).

strength of dependence, the empirical Kendall’s τ is used. The Dissmann algorithm selects

tree T1 by using a maximal spanning tree algorithm with the absolute value of empirical

Kendall’s τ between any pair of variables as weights. Once tree T1 is determined, all pair

copula families and parameters are selected and estimated using the approaches outlined

in Problems (1) and (2). For tree T2 all possible edges allowed by the proximity condition

are considered. This identifies pairs of variables in the pseudo data as defined in Equation

15. The absolute empirical Kendall’s τ for these pairs is used as a weight for selecting the

maximal spanning tree for T2. We can again selected pair copula families and estimate

parameters as in Problem (2). We continue that way until all trees, pair copula families,

and parameters are selected and estimated. This approach can be adapted for C- and D-

vine structures. For a C-vine, we choose the root node to the one maximizing the sum

of absolute empirical Kendall’s τ as illustrated in Czado et al. (2012). For D-vines, we

search for the path that maximizes the sum of absolute empirical Kendall’s τ . The above

procedures also work with nonparametric pair-copulas, (see, Nagler et al. 2017, for a survey

and comparison of available methods) and censored data (Barthel et al. 2018, 2017).

We illustrate the modeling process using the variables whole, shuck, vis, shell, dia and

len of the abalone data set. In a preliminary step, nonparametric estimates of the marginal

distribution functions are used to create pseudo copula data. Then we apply Dissmann’s

algorithm to fit R-, C- and D-vine copula models to the pseudo data. The fitted vine tree

structures are shown in Figure 5. Table 4 contains the selected pair copula families and

estimated parameters for the R-vine copula model. As expected, the fitted dependence

strength decreases as we move from T1 to T5. As a benchmark, we also fit a Gaussian vine

copula model. This is equivalent to a Gaussian copula, but more general than a multivariate

Gaussian model, since we allow for non-Gaussian marginal distributions. Table 5 compares

the different vine copula models and shows that the R-vine copula model provides the best

fit. In particular a Gaussian copula model is clearly insufficient.
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Table 5 Fit statistics for several vine copula models for variables whole, shuck, vis,

shell, dia and len from the female abalone data set.

copula model log-likelihood num. par. AIC BIC

R-vine copula 9097.57 17 -18161.14 -18073.17

Gaussian vine copula 8257.21 14 -16486.43 -16413.98

C-vine copula 9097.85 17 -18159.70 -18066.56

D-vine copula 9073.32 22 -18102.65 -17988.80

5. Computational aspects

The flexibility of R-vine copula models comes with computational challenges. First, the

number of pair-copulas grows quadratically in the dimension, which necessitates efficient

algorithm for inference and simulation. Second, such algorithms must deal with the huge

number of possible vine tree structures. Most of these issues have been addressed by the

research community in the last years, but the algorithms are difficult to implement for non-

experts. Hence, the availability of user-friendly software libraries was key to the popularity

of vine copula models. These libraries include: the R packages VineCopula (Nagler et al.

2020b), rvinecopulib (Nagler & Vatter 2020a); the MATLAB toolboxes VineCopulaMatlab

(Kurz 2015) and MATvines (Coblenz 2020); the C++ library vinecopulib (Nagler & Vatter

2020c); and Python libraries pyvinecopulib (Vatter et al. 2020) and pyvines (Yuan & Hu

2019). This relieves applied researchers from algorithmic difficulties, but they still need to

translate the model into a form the software can work with.

Morales-Nápoles (2011) developed a compact representation of the vine tree structure

in the form of a triangular matrix. This representation was later used by Dissmann et al.

(2013) to encode entire vine copula models. For example, the tree sequence in the left

column of Figure 5 can be translated into the array

M =



6 1 1 1 1 1

1 3 4 2 2

3 4 2 4

4 2 3

2 6

5



The label of j-th edge in tree t is given by (mj,d−j+1,mt,j ;mt−1,j , . . . ,m1,j). Less formally:

• start with the counter-diagonal element of column j (first conditioned variable),

• jump up to the element in row t of column j (second conditioned variable),

• gather all entries further up than row t in column j (conditioning set).

For example, the first column encodes the edges (5, 2; 4, 3, 1, 6), (5, 4; 3, 1, 6), (5, 3; 1, 6),

(5, 1; 6), and (5, 6). Dissmann et al. (2013) derived conditions that ensure the array corre-

sponds to a valid R-vine tree sequence.

For parametric vine copula models, the pair-copula families and parameters can be

stored in similar arrays. For example, if θt,j is the parameter of the j-th edge in the t-th
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tree, we can store the model parameters in the array

Θ =



θ1,1 θ1,2 θ1,3 θ1,4 θ1,5
θ2,1 θ2,2 θ2,3 θ2,4
θ3,1 θ3,2 θ3,3
θ4,1 θ4,2
θ5,1


In software libraries, the arrays are usually written as square matrices, where empty

entries in the matrix are filled with zeros by convention. For our example this would mean

to use a 6× 6 matrix for both M and Θ. The orientation of the matrices above is arbitrary

and different software libraries adopt different conventions. The upper-left triangular form

above is used by the vinecopulib library and its interfaces. In this format, the (t, j)-

entry of the matrices is the pivotal element for the j-th edge of tree t, which is intuitive

and simplifies indexing in algorithms. In several other libraries, the rows of the matrix

are reversed, making it lower-left triangular. The software accompanying the book of Joe

(2014) reverses the column order, making it upper-right triangular.

Vine copula models are often used for simulation, which is achieved through the Rosen-

blatt transform (Rosenblatt 1952) and its inverse. The Rosenblatt transform turns a random

vector U = (U1, . . . , Ud) with copula C into another vector V = (V1, . . . , Vd) = R(U) con-

taining independent uniform variables. It is given by

Vj = Cj|j−1,...,1(Uj |Uj−1, . . . , U1), j = 1, . . . , d.

where Cj|D is the conditional distribution of Uj given UD. The corresponding inverse

operation U = R−1(V ) turns independent uniform variables V into a vector U with copula

C. It is given by,

Uj = C−1
j|j−1,...,1(Vj |Vj−1, . . . , V1), j = 1, . . . , d,

In vine copula models, the conditional distributions and inverses appearing in the transfor-

mations can be computed efficiently using recursion over conditional distributions associated

to the pair copulas in the model; see Equation 19 and Chapter 6 in Czado (2019). The

same technique can be used to simulate conditionally from a vine copula model, provided

the required conditional distributions can be expressed by pair copula terms without the

need for integration (see, for example, Aas et al. 2021, Section 4.2). A specialized imple-

mentation for D- and C-vines is given in the CDVineCopulaConditional library (Bevacqua

2017).

6. Current and future research directions

In what follows, we summarize the literature of four particularly active areas of research

and point to future directions, mainly focusing on methodological developments. Further

topics and applications of vine copulas were reviewed recently by Czado (2019, Chapter

11) and Aas (2016); see also vine-copula.org for a broad collection of papers, talks and

videos.
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6.1. Statistical learning

In recent years, vine copula models have been used increasingly in statistical learning prob-

lems. One of the main tasks in statistical learning is regression. In the context of vine

copulas, regression problems are solved by building conditional response distributions. This

allows to extract, among others, conditional means and conditional quantiles.

A first question is how to best set up the vine structure in such a context. One approach

builds a vine distribution for the covariates alone and adds the response in a way that

the resulting conditional distribution is available in closed form, i.e., without the need for

integration over the vine copula density (Chang & Joe 2019, Chang et al. 2019, Cooke et al.

2019). These approaches focus on the vine structure of the covariates first, which may be

unnatural in the regression context. An alternative is to start with the response as the first

vine node and then add in such a way that the conditional distribution remains available

in closed form. The selection procedure stops if the conditional (penalized) log-likelihood

is no longer increasing. This idea was first developed for D-vine models by Kraus & Czado

(2017a) and later extended to certain R-vine structures by Zhu et al. (2021). Tepegjozova

et al. (2021) considered both D- and C-vines, but generalized the procedure to look two

steps ahead before adding a new variable. While the D- and C-vine methods are feasible

in large dimensions, the search for R-vines is restricted to smaller dimensions because of

the huge number of possibilities. How to select the covariates in high-dimensional R-vine

copula regression models therefore remains an open problem.

In the context of quantile regression, we need to adequately model tail dependence.

The classical approach is the linear quantile regression model of Koenker & Bassett (1978).

Bernard & Czado (2015) showed that for univariate Gaussian margins, the Gaussian copula

is the only one complying with linear regression quantiles. Thus linear quantile regression

is of little use for data with tail dependence. A further problem is that linear quantile

lines usually cross for different levels if the true multivariate distribution is not Gaussian.

Noh et al. (2015) formulated a copula-based quantile regression approach, which was later

extended to censored response variables (De Backer et al. 2017) and other regression prob-

lems (Nagler & Vatter 2020b). In these papers, the conditional response distribution is not

necessarily available in closed form, but is found through copula-based estimating equa-

tions. In contrast, Kraus & Czado (2017a) proposed a D-vine model where the conditional

quantile function can be computed by inverting the conditional response distribution func-

tion, which is available in closed form. Extensions including ordinal discrete variables and

nonparametric pair copulas were considered in Schallhorn et al. (2017) and Tepegjozova

et al. (2021).

Another important task of statistical learning is clustering. For model based clus-

tering finite mixtures of distributions are often assumed. Here, the random vector

X = (X1, . . . , Xd) has a density given by

f(x;θ,π) =

k∑
j=1

πjfj(x;θj), 22.

where πj ≥ 0,
∑k

j=1 πj = 1 and fj(·;θj) is the density of the j-th cluster with parame-

ters θj . The task is to estimate the unknown mixing probabilities π = (π1, . . . , πk), the

unknown parameter vector θ = (θ1, . . . ,θk) as well as the number of clusters k. Given

a fitted mixture model, observations are assigned to the cluster with the highest condi-

tional probability given the data. Estimation in finite mixture models is facilitated with
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the EM algorithm of Dempster et al. (1977). Mixtures of normals are the most promi-

nent models (Fraley & Raftery 2002), but require cluster distributions to have elliptical

shape. To achieve non-elliptical cluster shapes Diday (2002) utilized copulas and adapted

the EM algorithm. A restrictive d-dimensional Clayton copula was used by Cuvelier &

Noirhomme-Fraiture (2005). Vrac et al. (2005) use the expectation/conditional maximiza-

tion (ECM) algorithm of Meng & Rubin (1993) together with the Frank copula to jointly

cluster bivariate atmospheric profiles.

There has been some work connecting finite mixture models to vine copulas. Markov tree

models are equivalent to vine copulas truncated after the first tree (see, e.g., Brechmann

et al. 2012) and have been considered by Kirshner (2008) and Silva & Gramacy (2009).

Kim et al. (2013) consider parametric D-vine copulas with a single pair copula family and

estimate parameters jointly in the M-step, which is only tractable for small d. Roy &

Parui (2014) use mixtures of D-vine distributions for the analysis of observed principal

components, where the node order is determined by the magnitude of the eigenvalues. In

contrast, Sun et al. (2017) consider C-vine copulas as mixture components and sequential

estimation for the mixture components. In the M-step, the stepwise selection and estimation

approach for C-vines outlined in Section 4 is used. However, their method neglects the fact

that the choice of the C-vine copula families and parameters might depend on the weights

resulting from the E-step. Sahin & Czado (2021) extend these methods and allow to select

and estimate different R-vine distributions for each cluster based on the ECM algorithm.

All methods above implicitly assume that all variables in the data set are relevant for the

clustering. In high dimensions, this may not be the case and improvements can be expected

when restricting to only relevant variables. How to select this set of variables is an open

problem, however.

The mixture model Equation 22 can also be used for classification problems. Here,

we assign observations to the class with the highest posterior probability. Classification

algorithms based on this rule are called as Bayes classifiers. Copula-based Bayes classifiers

were already considered by Elidan (2012) using Bayesian networks and Salinas-Gutiérrez

et al. (2017) using chain graph models. Chen (2016), Carrera et al. (2016), and Carrera

et al. (2019) employed parametric vine copulas for the mixture components. Nagler &

Czado (2016) used nonparametric pair copulas and Schellhase & Spanhel (2018) allowed for

nonsimplified vines with a penalized spline approach. Tekumalla et al. (2017) used D-vine

models but, in contrast to the previous methods, allowed for multiple classes and discrete

variables through a computationally challenging Bayesian approach. Most works show good

performance compared to other competitors, but do not address important methodological

issues. In particular, variable selection and hyperparameter tuning in vine copula based

classifiers remains an open problem.

6.2. Structure selection and high-dimensional models

In Section 3, we saw that there are many possible regular vine structures. In principle, clas-

sical likelihood-based criteria (like AIC or BIC) can be used to determine the best structure.

Because the number of possible vines grows superexponentially (see Section 4), such pro-

cedures become infeasible already in moderate dimensions, however. This explosion and

the complex algebraic structure of vine tree sequences makes their selection an extremely

challenging problem.

Dissmann’s heuristic mentioned in Section 4 greedily maximizes the dependence in each
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tree based on the absolute value of Kendall’s τ . Variants replacing Kendall’s τ with AIC,

BIC, or p-values of Goodness-of-Fit tests were investigated in Czado et al. (2013), variants

with nonparametric pair-copulas by Nagler et al. (2017), and a variant taking the simplifying

assumption into account by Kraus & Czado (2017b). The empirical studies in these papers

indicate small improvements in performance, but these gains appear negligible in view of

the the added computational demand. Non-heuristic methods based on MCMC (Gruber &

Czado 2015, 2018) and neural networks (Sun et al. 2019) lead to more notable improvements

but take orders of magnitude longer to compute and are therefore only feasible in rather

small dimension. In view of the above, Dissmann’s heuristic remains the gold standard, even

a decade after it was initially developed in his thesis. A promising path for improvement

is to find ways to efficiently explore the space of vine structures. A first step along these

lines based on the concept of common sampling orders was taken by Cooke et al. (2015)

and Zhu et al. (2020). Another approach by Chang et al. (2019) limits the greediness of the

algorithm by looking ahead a fixed number of trees using Monte Carlo Tree Search. Despite

improving significantly over the benchmark on various data sets, there appears to remain

a lot of room for improvement — especially in higher dimensions.

In high-dimensional models, further challenges for model selection arise. The number of

model parameters grows quadratically in the dimension, which calls for sparse vine copula

models. A vine copula model is sparse when many pair-copulas correspond to (conditional)

independence. A natural sub-class are truncated vine copulas, i.e., models where all pair-

copulas after a certain tree are set to independence. The question then becomes how

to select the right truncation level and several solutions have been proposed (Kurowicka

2011, Brechmann et al. 2012, Brechmann & Joe 2015, Joe 2018). An alternative model

class are thresholded vine copulas, where all pairs with sufficiently weak dependence are

set to independence. Traditionally, the thresholding is done by an independence test based

on Kendall’s τ (e.g., Dissmann et al. 2013) as implemented in the VineCopula package.

A modified BIC criterion specifically tailored to high-dimensional vines was proposed by

Nagler et al. (2019) and is suitable to select both truncation level and thresholding level.

This method is implemented in the vinecopulib library. A separate line of research (Müller

& Czado 2018, 2019a,b) exploits connections between vine copulas and Gaussian DAGs

to find sparsity patterns. A completely different approach is to use dimension reduction

techniques before employing a copula model as in Tagasovska et al. (2019).

In high-dimensional linear models, it is well known that theoretical guarantees for es-

timation and inference break when the number of parameters is large compared to the

number of samples. There is no reason to believe that vine copula models are exempt from

this phenomenon, but it is unclear where the breakpoint lies. The only known theoretical

results in this regime were given in the model selection context by Nagler et al. (2019), but

they rely on an unverified assumption of consistent parameter estimates. Thus, asymptotic

results for inference in high-dimensional vine copula models are in dire need.

6.3. The simplifying assumption

As mentioned in Sections 2 and 3, vine copula models are usually built under the simplifying

assumption. The assumption is much weaker than conditional independence. Conditional

dependence of any strength and form is allowed, but only if it does not change with the

conditioning value. It is worth emphasizing that the simplifying assumption is only re-

quired for explicit pair-wise dependencies in the model, i.e., those corresponding to an edge
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in the vine. All other pair-wise dependencies can (and often will) be non-simplified. An

obvious question, first raised by Hobæk Haff et al. (2010), is how constraining the simpli-

fying assumption is. Some popular multivariate parametric copulas, most notably elliptical

copulas and the Clayton copula, are known to satisfy the simplifying assumption (Stöber

et al. 2013) – in a very strong sense: due to their closedness in conditioning and marginal-

ization, they are simplified for every possible R-vine structure. Hobæk Haff et al. (2010)

provided numerical examples suggesting that a simplified parametric model can be a very

good approximation even if the true model is not simplified.

To check whether the simplifying assumption holds for a particular data set, several

statistical tests have been developed. Most of them focus on a simpler setting, where there

is only one bivariate copula and one or more covariates (e.g., Acar et al. 2013, Gijbels

et al. 2017, Derumigny & Fermanian 2017). The problem is more difficult in the context

of vine copulas, because the assumption needs to be tested for every pair-copula. A pro-

cedure tailored to parametric vine copulas was developed by Kurz & Spanhel (2018) and

implemented in the pacotest R package (Kurz 2017). The authors perform an empirical

study suggesting that the assumption cannot be rejected in several financial data sets, but

is rejected already in the second tree for some others. Even if the assumption is violated,

Portier & Segers (2018) showed that a simplified empirical copula can be estimated non-

parametrically at
√
n-rate, as suggested by simulations in the context of simplified vines

by Haff & Segers (2015). In a similar vein, Nagler & Czado (2016) proved that simplified

vine copula densities can be estimated at a rate equivalent to a two-dimensional problem.

Their simulations suggest that, in a nonparametric setting, the simplifying assumption can

be beneficial even if it is severely violated.

It is also possible to build non-simplified models. Acar et al. (2012) developed a kernel

method for three-dimensional semiparametric vines. A fully parametric model, where the

conditional dependence is modeled similar to a GLM was proposed by Han et al. (2017). A

semiparametric model allowing for more general, additive relationships was developed by

Vatter & Nagler (2018) and is implemented in the gamCopula R package (Vatter & Nagler

2017). A fully nonparametric method based on splines and dimension reduction of the

covariate space was proposed by Schellhase & Spanhel (2018) and is available through the

pencopulaCond R package (Schellhase 2017).

The fact that vine copula models contain multiple interrelated pair-copulas complicates

interpretation of the simplifying assumption. Killiches et al. (2017) used visualizations of

three-dimensional density contours to provide some geometrical intuition. However, Spanhel

et al. (2019) showed in several toy examples that the simplifying can have several unintuitive

implications. First, using the true pair-copulas in the first tree is often suboptimal. Second,

spurious dependence can appear in higher tree levels, which makes interpretation of those

pair copulas difficult. Mroz et al. (2021) further proved that any copula can be approximated

arbitrarily well by a simplified vine copula in the supremum metric, but not for more

intuitive notions of distance (like KL divergence or total variation metric) and the distance

can be quite large. This alone should not discourage researchers from employing a simplified

model. The exact validity of a model’s assumptions is not the primary determinant of its

usefulness, but some care is in order when interpreting the results.
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6.4. Time series models

Time series models based on vine copulas have become quite popular, especially in financial

econometrics. In the context of a multivariate time series X1, . . . ,XT ∈ Rd, there are two

types of dependence: serial dependence (dependence across different points in time) and

cross-sectional dependence (dependence in the vector Xt at a given point in time).

The majority of works separate the two types of dependence. Classical time-series

models (such as ARMA/GARCH models) are used to filter the univariate serial dependence

in each margin and a vine copula model is employed for the cross-sectional dependence across

residuals. A first instance of such a model with ARMA-GARCH filters was already given

in the seminal paper by Aas et al. (2009) and in higher dimensions by Brechmann & Czado

(2013). Later Min & Czado (2014) additionally allowed for nonparametric estimation of

the marginal residual distribution and provided asymptotic results for the copula parameter

estimates. Other marginal filters can be used as well, for example in the presence of non-

stationary trends (e.g., Jäger et al. 2019).

In most early works, the cross-sectional dependence was assumed to be fixed. Chollete

et al. (2009) relaxed this assumption by allowing the parameters of a C-vine copula to switch

between two regimes depending on a latent Markov process. This model was generalized

by Stöber & Czado (2014) and Fink et al. (2017) to multiple regimes, each corresponding

to a different R-vine copula. Other works modelled the change of dependence on a finer

scale by explicitly specifying the dynamics of copula parameters. In So & Yeung (2014),

each parameter follows observation-driven dynamics similar to the DCC-GARCH model

(Engle 2002). Another line of research considers model-driven dynamics, where copula

parameters are modelled as latent AR(1) processes. Almeida et al. (2016) and Goel & Mehra

(2019) developed frequentist estimation procedures for C- and D-vine models. Kreuzer &

Czado (2019) and Kreuzer & Czado (2021) proposed Bayesian approaches for general R-

vine models and parsimonious factor copulas expressed as C-vines. A different approach

was taken by Vatter & Nagler (2018) and Acar et al. (2019), where the model parameters

are modeled as smooth functions of time and estimated by spline and kernel techniques,

respectively.

The separation of serial and cross-sectional dependence is convenient because it allows

to rely on well-established models for univariate series. But serial dependence can be

characterized by a copula, too, and conceptually there is no reason to treat the serial part

differently from the cross-sectional one. Around the same time, three papers independently

proposed vine copula models that capture both types of dependence simultaneously: the

COPAR model of Brechmann & Czado (2015), the D-vine model of Smith (2015), and the

M-vine model of Beare & Seo (2015). The three models differ in the vine structure, but

their motivation is the same. The idea is to choose a structure that ensures stationarity of

the model by imposing a simple restriction on the pair-copulas: if we shift all indices of an

edge in time, the associated pair-copula must remain the same. This idea was formalized by

Beare & Seo (2015) and called translation invariance. Nagler et al. (2020a) gave a complete

characterization of the class of vine structures that ensure stationarity under translation

invariance. Surprisingly, the COPAR model does not fall under this category and, hence,

may not be stationary. Nagler et al. (2020a) also derived asymptotic properties of parameter

estimates and simulation-based predictions from such models. They also pointed to an open

problem regarding to the mixing properties of the resulting time series. Another interesting

venue for future research is to adapt these models for non-stationary and long-memory time

series.
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